Cargo Spacecraft

Introduction

A place of orbital habitation like the International Space Station can not operate without regular traffic to and from the station. We can observe two types of spacecraft in the immidiate vicinity of the ISS, manned ships like the Soyuz and unmanned cargo ships. There are several types of cargo craft in rotation so these offer the best chances for observation. In most cases these spacecraft are in docked position when we observe the ISS, in some rare opportunities we can see the two spacecraft separated. Docked Soyuz or Progress capsules are sometimes well visible in high resolution images, depending on conditions like the location of the docked spacecraft, obstructions by other elements of the station, the observing angle and the image quality. In good seeing it is possible to see a Progress or Soyuz vehicle without too much trouble when it is docked at the aft end of the Zvezda module. In contrast, when a capsule is docked at an Earth facing port, it is harder to recognize as we look at the short axis, and it is almost completely invisible when it is docked at a zenith-(upward facing) port of the station.

Technique

When a cargo ship is on its way to the space station it can be observed as a fainter object in the same trajectory in the sky. Its brightness depends a lot on the type of spacecraft and the illumination. The retired European Automated Transfer Vehicle (ATV) was in most cases a reasonable bright object while on the other hand a Progress can be pretty dim and a Cygnus can even be dimmer. Photography of these cargo craft in solo flight can be realized with the same imaging technique as required in general for smaller artificial satellites in low Earth orbit. Sometimes there is a chance to observe a cargo ship or a Soyuz shorty after launch and in the hours after the launch the spacecraft can often be seen in a lower orbit then that of its destination. This offers chances to acquire more detailed views although the higher angular speed of the lower orbit introduces other difficulties. In rare occasions it is possible to capture manned or unmanned traffic in one image with the space station while the two spacecraft are still separated. (see chapter HTV).

_______________________________________________________________________________________________________________________

Progress Cargocraft

The Progress is the classic ISS cargocraft operated by Roscosmos. This is the unmanned version of the Soyuz spacecraft and looks basically the same. For ground-based imagery it can be interesting to note that the neck between the fuel compartment and the pressurized forward module is a bit thinner on the Soyuz then on the Progress. This would theoretically increase the chance to resolve the different modules on the Soyuz. Progress cargocraft are in flight since January 1978 when it made its maiden flight to the Salyut 6 space station. I was able to photograph different Progress ships, on their way to the ISS, during re-docking actions, or after undocking. On September 3, 2010, I took images of the Progress M-06M. In March 1019, I processed images of this imaging session that remained untouched until then. This would become one of my best spacecraft images so far.


         Left: The Progress M-06M photographed on September 3, 2010 and processed in 2019. Right: Model for comparison. The spherical section on top contains the actual cargo



Space X Dragon


The Dragon cargocraft from the private company SpaceX has become in recent years a grateful object to observe. I succeeded in resolving the shape of the capsule and some unidentified contrast structures several times. Due to a lack of spectacular detail in the Dragon, it's difficult to obtain really interesting detail such as is the case with the Dragon's rocket upper stage were it is possible to capture the rocket engine. (see page Rocket Stages and Rocket Engines). Due to the Earth-faced docking-location at the ISS, the Dragon is also no easy object to photograph when it is docked. So far I did not succeed to photograph the solar panels of the Dragon spacecraft but these often form a special difficulty due to an unfavorable observing/illumination angle. However, most solar panels are relatively easy to photograph if the angle and the illumination is favorable.


                                             The Dragon CRS-8 capsule photographed on April 9, 2016 from a range of 362 kilometers. Note the visible flattening on top.



                                                                             On April 18, 2014, the SpaceX Dragon CRS-3 cargo craft launched to the ISS.
                                                                                The capsule's shape with some structure is photographed here in the first
                                                                                          orbit passing over Europe (Netherlands) directly after launch.


Automated Transfer Vehicle (ATV)

The Automated Transfer Vehicle was an ISS cargo craft developed by the European Space Agency (ESA). Five successful missions supplied the ISS from 2008 to 2015. The ATV was an easy observable spacecraft thanks to its relatively large dimensions of 10,3 by 4,5 meters. In high resolution telescopic images it resolved relatively easily and it looked as an elongated object with specific structure. The 4 thin solar panels of the ATV were sometimes visible and sometimes completely absent in the images. The observing angle and illumination should be good to capture the 1 meter thin solar panels. During the operational period, I observed the ATV regularly when it was orbiting solo before or after docking. Several times I photographed also the vehicle when it was docked to the ISS thanks to its favorable location on the Zvezda Module.
Shown below are only some of the very best results of my ATV imaging sessions throughout the years. Results I obtained were also regularly published in the ESA ATV-blog.

                                                  The ATV-5 with its thin solar panels photographed on August 5, 2014. Left: animation of 6 frames, right: stack of 6 frames.

                                                                                      




                                          Below: The ATV-3 with solar panels captured on March 28, 2012 from a range of 402 kilometers. Left: part of the video, mid: image processing

                                                          

        


                                           When imaging cargo spacecraft or satellites in general, it is no guarantee that the solar panels will be visible at all.
                                           During many ATV-passes, apparently only the body was illuminated as in these images of the ATV-4 Albert Einstein
                                                     taken on June 8, 2013. Though, the elongated ATV body itself shows some segment structure



                                                                                 Animated gif made of 3 frames of the ATV-1 (Jules Verne) after undocking
                                                                               Compare the visible structure on the capsule with the images of ATV-4 above
                                                                                  The image was taken on September 27, 2008, 2 days before its reentry

    
                                                                         ATV-1 Jules Verne at its location on the ISS Zvezda Module , taken on July 30, 2008


H2 Transfer Vehicle (HTV)

The HTV Transfer Vehicle or Counotori is the cargo spacecraft developed and operated by the Japan Aerospace Exploration Agency (JAXA). Its size is comparable to that of the ATV and therefore it can reach a comparable brightness in the sky. A for astrophotographers important difference with the European ATV is that it has no deployed solar panels but the solar panels are wrapped around the cylinder. I was in the position to photograph the first  HTV (demonstration flight) that was launched in September 2009 in orbit before it was filmed by the camera's on board the ISS. The images were published by JAXA on their website in that time. HTV-flights are sheduled until 2020. For a docking to the ISS, a HTV spacecraft is grappled by the robotic arm Canadarm-2 and then berthed to the Harmony module. Although this docking place is on the Earth-facing side of the ISS, it is not very easy to photograph a docked HTV clearly because, seen from the ground, it is located in front of the other structures of the space station.

                 

                                                     The HTV-1 photographed on September 13, 2009 shortly after launch from a distance of 285 kilometers
                                                           Compare detail as the bright rings and their location with the image on the right taken from space were
                                                           it is grappled with the ISS robotic arm
                                              



                                                                           
                                                      Telescopic capture of a huge flare on the ATV-4 taken on August 8, 2013 in poor seeing conditions.
                                                               Although the shape of the module is barely visible due to the poor seeing, the color is striking



                                             The HTV-1 (the smaller object on top, left) shortly before docking in one video image with the ISS on September 17, 2009